
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Lesson 5.3
Continuous Integration

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

Continuous Integration (CI) provides global
feedback on local changes

• Given: Our systems involve many components, some of
which might even be in different version control
repositories

• Consider: How does a developer get feedback on their
(local) change?

A CI process is a software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare

Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end Test

Develop Build Test Deploy Monitor

CI may be triggered by commits, pull
requests, or other actions

Example: Small scale CI, with a service like CircleCI,
GitHub Actions or TravisCI

commits code to

Developer

GitHub

TravisCI

checks for updates

Runs build for each

commit

GitHub
Actions

CircleCI

Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers
(e.g. testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Typical CI pipeline

• Set up testing environment

• Set up tests

• Set up multiple input

• Run all tests against all inputs
• (preferably in parallel)

• Record results and performance in central
db

6

Combine

Result

S tage 3 S tage 3 S tage 3 S tage 3 S tage 3

S tage 2 S tage 2 S tage 2 S tage 2 S tage 2

S tage 1 S tage 1 S tage 1 S tage 1 S tage 1

Partition

Big Da ta (lots of work)

You could set up multiple CI processes

• Run a short test daily
• or oftener

• maybe on every commit?

• More comprehensive test less often
• provides more accurate performance data

• Either way, you know that your integration is
working!

7

Continuous Integration is Highly
Configurable

• Determining how to apply CI can be non-trivial for a larger project,
all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

• Do we integrate changes immediately, or do a pre-commit test?

• Which tests do we run when we integrate?

• When do we integrate code review?

• How do we compose the system under test
at each point?

Changed code

My Social Network App

Cache

Check

Send

response

Build

friends list

Build

Suggestions

Build

Newsfeed

Other developers’ changed code

CI pipelines can automate performance
testing

https://github.com/neu-se/CONFETTI/actions

Every commit: Run 10 minute

performance test on 5

benchmarks, repeating each test

5 times (25 concurrent jobs)

On Demand: Run 24 hour

performance test on 5

benchmarks, repeating each test

20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

CI pipelines can automate benchmarking

On Demand: Run 24 hour

performance test on 5

benchmarks, repeating each test

20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

Attributes of effective CI processes

• Policies:
• Do not allow builds to remain broken for a long

time

• CI should run for every change

• CI should not completely replace pre-commit
testing

• Infrastructure:
• CI should be fast, providing feedback within

minutes or hours

• CI should be repeatable (deterministic)

Effective CI processes are run often enough
to reduce debugging effort

• Failed CI runs indicate a bug was
introduced, and caught in that run

• More changes per-CI run require more
manual debugging effort to assign
blame

• A single change per-CI run pinpoints the
culprit

Effective CI processes allocate enough resources
to mitigate flaky tests

• Flaky tests might be dependent on timing (failing due to timeouts)

• Running tests without enough CPU/RAM can result in increased flaky
failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds

• Which commands to run to produce an executable?
(build systems)

• How to link third-party libraries? (dependency
managers)

• How to specify system-level software
requirements? (containers)

• How to specify infrastructure requirements?
(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks

• “Orchestrate” -> Execute in the right order, ideally
with concurrency, example tasks:

• Installing dependencies
• Compiling the code
• Running static analysis
• Generating documentation
• Running tests
• Creating artifacts for customers
• Deploying Code

• Example build systems: xMake, ant, maven, gradle,
npm…

Dependency Managers Organize External
Dependencies

• Addresses this problem: “Before you compile this code, install
commons-lang from the Apache website”

• Declare a dependency using coordinates (unique ID of a package plus
version)

• Packages are archived in common repositories; fetched/linked by
dependency manager

• Dependency managers handle transitive dependencies

• Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care

• Semantic Versioning is often expected:
• Library maintainers expected to indicate breaking

changes with version numbers

• Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/
https://semver.org/

Continuous Integration Service Models

• Self-hosted/managed on-premises or in cloud

• Jenkins

• Fully cloud managed

• GitHub Actions, CircleCI, Travis, many more…

• Billing model: pay per-build-minute running on SaaS
infrastructure

• “Self-hosted runners” run builds on your own
infrastructure, usually “free”

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 5.3 Continuous Integration
	Slide 2: Continuous Integration (CI) provides global feedback on local changes
	Slide 3: A CI process is a software pipeline
	Slide 4: CI may be triggered by commits, pull requests, or other actions
	Slide 5: Automating Feedback Loops is Powerful
	Slide 6: Typical CI pipeline
	Slide 7: You could set up multiple CI processes
	Slide 8: Continuous Integration is Highly Configurable
	Slide 9: CI pipelines can automate performance testing
	Slide 10: CI pipelines can automate benchmarking
	Slide 11: Attributes of effective CI processes
	Slide 12: Effective CI processes are run often enough to reduce debugging effort
	Slide 13: Effective CI processes allocate enough resources to mitigate flaky tests
	Slide 14: Challenges and Solutions for Repeatable Builds
	Slide 15: Build Systems Orchestrate Software Engineering Tasks
	Slide 16: Dependency Managers Organize External Dependencies
	Slide 17: Specify and Depend on Package Versions with Care
	Slide 18: Continuous Integration Service Models

