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Continuous Integration (CI) provides global 
feedback on local changes

• Given: Our systems involve many components, some of 
which might even be in different version control 
repositories

• Consider: How does a developer get feedback on their 
(local) change?



A CI process is a software pipeline
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CI may be triggered by commits, pull 
requests, or other actions

Example: Small scale CI, with a service like CircleCI, 
GitHub Actions or TravisCI
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Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers 
(e.g. testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/


Typical CI pipeline

• Set up testing environment

• Set up tests

• Set up multiple input

• Run all tests against all inputs 
• (preferably in parallel)

• Record results and performance in central 
db
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You could set up multiple CI processes

• Run a short test daily
• or oftener

• maybe on every commit?

• More comprehensive test less often
• provides more accurate performance data

• Either way, you know that your integration is 
working!
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Continuous Integration is Highly 
Configurable

• Determining how to apply CI can be non-trivial for a larger project, 
all with a cost vs quality tradeoff: what is the cost of automation vs 
the value of developer time?

• Do we integrate changes immediately, or do a pre-commit test?

• Which tests do we run when we integrate?

• When do we integrate code review?

• How do we compose the system under test 
at each point?
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CI pipelines can automate performance 
testing

https://github.com/neu-se/CONFETTI/actions

Every commit: Run 10 minute 

performance test on 5 

benchmarks, repeating each test 

5 times (25 concurrent jobs)

On Demand: Run 24 hour 

performance test on 5 

benchmarks, repeating each test 

20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions


CI pipelines can automate benchmarking

On Demand: Run 24 hour 

performance test on 5 

benchmarks, repeating each test 

20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions


Attributes of effective CI processes

• Policies:
• Do not allow builds to remain broken for a long 

time

• CI should run for every change

• CI should not completely replace pre-commit 
testing

• Infrastructure:
• CI should be fast, providing feedback within 

minutes or hours

• CI should be repeatable (deterministic)



Effective CI processes are run often enough 
to reduce debugging effort

• Failed CI runs indicate a bug was 
introduced, and caught in that run

• More changes per-CI run require more 
manual debugging effort to assign 
blame

• A single change per-CI run pinpoints the 
culprit



Effective CI processes allocate enough resources 
to mitigate flaky tests

• Flaky tests might be dependent on timing (failing due to timeouts)

• Running tests without enough CPU/RAM can result in increased flaky 
failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132


Challenges and Solutions for Repeatable Builds

• Which commands to run to produce an executable? 
(build systems)

• How to link third-party libraries? (dependency 
managers)

• How to specify system-level software 
requirements? (containers)

• How to specify infrastructure requirements? 
(Infrastructure as code)



Build Systems Orchestrate Software 
Engineering Tasks

• “Orchestrate” -> Execute in the right order, ideally 
with concurrency, example tasks:

• Installing dependencies
• Compiling the code
• Running static analysis
• Generating documentation
• Running tests
• Creating artifacts for customers
• Deploying Code

• Example build systems: xMake, ant, maven, gradle, 
npm…



Dependency Managers Organize External 
Dependencies

• Addresses this problem: “Before you compile this code, install 
commons-lang from the Apache website”

• Declare a dependency using coordinates (unique ID of a package plus 
version)

• Packages are archived in common repositories; fetched/linked by 
dependency manager

• Dependency managers handle transitive dependencies 

• Examples: Maven, NPM, pip, cargo, apt



Specify and Depend on Package Versions with 
Care

• Semantic Versioning is often expected:
• Library maintainers expected to indicate breaking 

changes with version numbers

• Dependency consumers can specify constraints on 
versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/
https://semver.org/


Continuous Integration Service Models

• Self-hosted/managed on-premises or in cloud

• Jenkins

• Fully cloud managed

• GitHub Actions, CircleCI, Travis, many more…

• Billing model: pay per-build-minute running on SaaS 
infrastructure

• “Self-hosted runners” run builds on your own 
infrastructure, usually “free”
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