CS 4530: Fundamentals of Software Engineering
Lesson 5.3
Continuous Integration

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Continuous Integration (CI) provides global
feedback on local changes

* Given: Our systems involve many components, some of
which might even be in different version control
repositories

* Consider: How does a developer get feedback on their
(local) change? Our changed code

Build Build Build Send
friends list Newsfeed Suggestions response

Other developers’ changed code

A CI process is a software pipeline

Automate this centrally, provide a central record of results

¥

Style Check Integration Test End-to-end Test
: Our changed code
Unit Test

Build Build
friends list Suggestions

Prepare
Deployment

Other developers’ changed code

CI may be triggered by commits, pull
requests, or other actions

Example: Small scale Cl, with a service like CircleCl,
GitHub Actions or TravisCl GitHub

D
%for updates
ok
® 029
©

CircleCl Gitl.'IUb TravisClI
Actions

commits code to

Developer

Runs build for each
commit

Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers
(e.g. testing/deployment)

HOW LONG CAN YOU WORK ON MAKING A ROUTINE. TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TiIME THAN YOU SAVE?
(ACROSS FIVE YEARS)

—— HOWOFTEN YOUDO THETRSK —
Ofony Spar DALY WEEKLY MONFLY YEARLY

1 5conD | [T DAY | 24085 | idtes | pomaires| MnDre | secmos

5 SECONDS ED% |2 HOORS | 2 HOURS Mlsz‘In-:s MIN§TE5 SEC%;?DS

30 SE0NDS | T e [3]0 | 12 voues | 2vouks | SO | 2

e 2 rwore | U T omvs | [T onr | 4 voors | vk | 0D
% 5 MINUTES [6] oars| 21 Houes | 5 Hoves Mmzuqts

SHHo\éFE 30 MNUTES [T) DAY | 2 Howrs
1 HOR [2]oAvs| 5 Howes

6 HOURS 2 weees | L] DAY

[T ow Buems (5108

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xked.com/1205/

https://xkcd.com/1205/

Typical CI pipeline

* Set up testing environment

* Set up tests
* Set up multiple input

* Run all tests against all inputs
* (preferably in parallel) S e e ——(——

* Record results and performance in central T~ |
b =

You could set up multiple CI processes

* Run a short test daily
e or oftener
* maybe on every commit?

* More comprehensive test less often
e provides more accurate performance data

e Either way, you know that your integration is
working!

Continuous Integration is Highly
Configurable

e Determining how to apply Cl can be non-trivial for a larger project,
all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

* When do we integrate code review?

 How do we compose the system under test Changed code

at each point?
Newsfeed

Build

Build
Suggesnons

friends list

Send
response

Other developers’ changed code

CI pipelines can
testing

automate performance

eval-10m-5x.yml
on: push

@ evaluate [build-matrix

5s

Matrix: evaluate / run-fuzzer

@ evaluate / run-fuzzer (

@ evaluate [run-fuzzer ...
@ evaluate / run-fuzzer ...
@ evaluate [run-fuzzer (...
@ evaluate | run-fuzzer (...
@ evaluate [run-fuzzer ...
@ evaluate | run-fuzzer (...
@ evaluate [run-fuzzer ...
@ evaluate [run-fuzzer (...
° evaluate [run-fuzzer (...
@ evaluate [run-fuzzer ...
Q evaluate [run-fuzzer ...
@ evaluate [run-fuzzer ...

@ evaluate / run-fuzzer ...

... 12m 21s @ evaluate [repro-jacoco 5m 5s @ evaluate / build-site
12m 25s . .
Every commit: Rum 10 mivute
12m 23s

performance test on 5
12m 275 benchmarks, repeating each test
5 times (25 concurrent jols)

12m 13s
12m 24s

12m
eval-24h-20x.yml

12m: on: workflow_dispatch Matrix: evaluate | run-fuzzer

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

12m Q evaluate [build-matrix 25 ® ° O evaluate [run-fuzzer (an...
12m” @ evaluate [run-fuzzer (bc...
12m: @ evaluate [run-fuzzer (cl...
12m @ evaluate [run-fuzzer (m...
12m: @ evaluate [run-fuzzer (rh...
12m

@ evaluate [run-fuzzer (an...

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

52s

o @ evaluate [repro-jacoco 13m 52s

evaluate / build-site

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

CI pipelines

can automate benchmarking

closure

Branch Probes Over Time

el
————
/J/—’/
30000
25000
@
>
=3
S
2
]
o
=
2 20000 -
<4
@
15000
T T
0 500 1000 1500

Campaign Time (minutes)

Download this graph as PDF

eval-24h-20x.yml

on: workflow_dispatch

@ evaluate / build-matrix

config

~——— d4bded

——— reportir

Matrix: evaluate / run-fuzzer

@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

@ evaluate [run-fuzzer (m...

@ evaluate [run-fuzzer (rh...
@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate [run-fuzzer (cl...

- . h e

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

https://qgithub.com/neu-se/CONFETTI/actions

o @ evaluate [repro-jacoco 13m 52s @ evalu:

On Demand: Run 2.4 hour
performance test on 5
benchmarks, repeating each test
2.0 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions
https://github.com/neu-se/CONFETTI/actions

Attributes of effective CI processes

Policies:

Do not allow builds to remain broken for a long

time
Cl should run for every change

Cl should not completely replace pre-commit

testing

Infrastructure:

* Clshould be repeatable (deterministic)

Cl should be fast, providing feedback within

minutes or hours

+ Output the full test name

All checks have passed
9 successful checks

-V O Build and Test the Grader | build (push) Successfu... Details
v O Check distf | check-dist (push) Successful in 30s Details
3X
v (@) Build and Test the Grader / test (reference) (push) ... Details
+:
v O Build and Test the Grader [test (b) (push) Succes... Details r
.~ fmY Ruild and Tact tha Gradar | tact (te-ianara) (nich) Nataile
Tools: extract_features.py: correct define name for AP_RPM_ENABLED
, peterbarker committed 5 days ago X
AP_Mission: prevent use of uninitialised stack data -- o2

’ peterbarker committed 5 days ago X

AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... -
QE andyplper authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
__3 ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
& yuri-rage authored and tridge committed 6 days ago X

Effective CI processes are run often enough

to reduce debugging effort

* Failed Cl runs indicate a bug was
introduced, and caught in that run

* More changes per-Cl run require more
manual debugging effort to assign
blame

* A single change per-Cl run pinpoints the
culprit

B prestodb / presto

Current Branches Build History Pull Requests

+/ master

@& James Sun

This patch bumps Alluxio dependency to 2.3.0

| master

O Andrii Rosa

Handle query level timeouts in Presto on Spar}
| master
@ Wwenlei Xie

</ master

© Andrii Rosa

Check requirements under try-catch
Update TestHiveExternalWorkersQueries to cre

</ master Introduce large dictionary mode in SliceDictior

9 Maria Basmanova

| master Add Top N queries to TestHiveExternalWorkers

@ Maria Basmanova

X master Fix client-info test-name output

Leiging Cai
< master Add Thrift transport support for TaskStatus
© Andrii Rosa

</ master
& Maria Basmanova
a

Fix flaky test for TestTempStorageSingleStream

-0- #52300 passed
36392a2

-o- #52287 errored

aa55ea7

- #52284 errored
193a4cd

- #52283 passed
FFF331f

©- #52282 passed
746d7bS

o- #52277 passed

a9ed97a

- #52271 errored
8b62d43

-o- #52266 failed

467277a

o- #52263 passed
fc94719

10 hrs 49 min 31 sec
2days ago

11 hrs 6 min 44 sec
2 days ago

11 hrs 50 min 37 sec
2 days ago

11 hrs 3 min 20 sec

2 days ago

10 hrs 55 min 37 sec
2days ago

10 hrs 43 min 30 sec

2 days ago

10 hrs 46 min 36 sec
3days ago

10 hrs 35 min 49 sec
3days ago

11 hrs 13 min 42 sec
3days ago

More options

Effective CI processes allocate enough resources
to mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to timeouts)

* Running tests without enough CPU/RAM can result in increased flaky
failure rates and unreliable builds

CPU 4 and RAM 8GB

CPU 2 and RAM 16GB

CPU 2 an
CPU 2 an
CPU 1 an
CPU 1 an
CPU 0.5 an
CPU 0.5 an

CPU 0.25 an
CPU 0.1 an
CPUO0.1 an

d RAM 8GB
d RAM 4GB
d RAM 8GB
d RAM 4GB
d RAM 4GB
d RAM 2GB
d RAM 2GB
d RAM 2GB
d RAM 1GB

Configuration Ranked As
B Best Price

[Best Reliability

M Best Reliability and Price

0

10
Number of Projects

15

20

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds

 Which commands to run to produce an executable?
(build systems)

 How to link third-party libraries? (dependency
managers)

* How to specify system-level software
requirements? (containers)

* How to specify infrastructure requirements?
(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks

e “Orchestrate” -> Execute in the right order, ideally
with concurrency, example tasks:

* Installing dependencies
* Compiling the code
* Running static analysis
* Generating documentation
* Running tests
* Creating artifacts for customers
* Deploying Code
e Example build systems: xMake, ant, maven, gradle,
npm...

Dependency Managers Organize External
Dependencies

* Addresses this problem: “Before you compile this code, install
commons-lang from the Apache website”

* Declare a dependency using coordinates (unique ID of a package plus
version)

* Packages are archived in common repositories; fetched/linked by
dependency manager

« Dependency managers handle transitive dependencies &
* Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care

* Semantic Versioning is often expected:

* Library maintainers expected to indicate breaking
changes with version numbers

* Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

100%

75%

50%

25%
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2.0.0 2.0.0-rc.2 2.0.0-rci 1.0.0 1.0.0-beta

Semantic Versioning 2.0.0

Constraint type

. Exact (=1.2.3)
B Buz-123)
I Minor (123 Summary

B Gea=123)
. Any (%) Given a version number MAJOR.MINOR.PATCH, increment the:

=R

Percentage of dependencies
=N

=R

Other 1. MAJOR version when you make incompatible API changes

2. MINOR version when you add functionality in a backwards compatible manner

3. PATCH version when you make backwards compatible bug fixes

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

0%

Year

Distribution of dependencies of all packages in NPM overtime (2023, Pinckney et al)

https://semver.org/
https://semver.org/

Continuous Integration Service Models

* Self-hosted/managed on-premises or in cloud
* Jenkins

* Fully cloud managed
* GitHub Actions, CircleCl, Travis, many more...

* Billing model: pay per-build-minute running on Saa$
infrastructure

e “Self-hosted runners” run builds on your own
infrastructure, usually “free”

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 5.3 Continuous Integration
	Slide 2: Continuous Integration (CI) provides global feedback on local changes
	Slide 3: A CI process is a software pipeline
	Slide 4: CI may be triggered by commits, pull requests, or other actions
	Slide 5: Automating Feedback Loops is Powerful
	Slide 6: Typical CI pipeline
	Slide 7: You could set up multiple CI processes
	Slide 8: Continuous Integration is Highly Configurable
	Slide 9: CI pipelines can automate performance testing
	Slide 10: CI pipelines can automate benchmarking
	Slide 11: Attributes of effective CI processes
	Slide 12: Effective CI processes are run often enough to reduce debugging effort
	Slide 13: Effective CI processes allocate enough resources to mitigate flaky tests
	Slide 14: Challenges and Solutions for Repeatable Builds
	Slide 15: Build Systems Orchestrate Software Engineering Tasks
	Slide 16: Dependency Managers Organize External Dependencies
	Slide 17: Specify and Depend on Package Versions with Care
	Slide 18: Continuous Integration Service Models

